

DATASHEET

ELEM-5070E7F32838Z6-T2

Received
☐ MASS PRODUCTION
■ PRELIMINARY
□ CUSTOMER DESIGN
DEVICE NO. : DHE-000XXXX
PAGE: 12

	Revised record	
REV.	DESCRIPTION	RELEASE DATE
1	New create	2014.08.13

ELEM-5070E7F32838Z6-T2

PRELIMINARY

Features

- •Small & compact package and with high efficiency
- ●Typical luminous flux: 22 lm @ 60mA
- ●Typical color temperature: 6000K@ 60mA
- optical efficiency@60 mA: 110 lm/W
- •Grouping parameter: total luminous flux, color coordinates.
- •RoHS compliant & Pb free.

Applications

- •Mobile Phone Camera Flash(Camera flash light /strobe light for mobile devices)
- ●Torch light for DV(Digital Video) application
- •Indoor lighting applications
- •Signal and symbol luminaries for orientation maker lights (e.g. steps, exit ways, etc.)
- TFT backlighting
- •Exterior and interior illumination applications
- Decorative and Entertainment Lighting
- •Exterior and interior automotive illumination

Device Selection Guide

Chip Materials	Emitted Color
InGaN	White

Absolute Maximum Ratings (T_{solder pad} =25°C)

Parameter	Symbol	Rating	Unit
DC Forward Current (mA)	l _F	80	mA
Peak Pulse Current (mA) (400ms : ON , 3600ms : OFF)	I _{Pulse}	250	mA
Reverse Voltage	V_R	[1]	V
Junction Temperature	T_J	115	$^{\circ}\mathrm{C}$
Operating Temperature	T_{Opr}	-40 ~ +85	$^{\circ}\mathrm{C}$
Storage Temperature	T_{Stg}	-40 ~ +100	$^{\circ}\!\mathrm{C}$
Power Dissipation (Pulse Mode)	P_d	1.1	W
Soldering Temperature	T_{Sol}	260	$^{\circ}\mathrm{C}$
Allowable Reflow Cycles	n/a	2	cycles
Viewing Angle ₍₂₎	2 <i>θ</i> 1/2	120	deg

- 1. The ELEM series LEDs are not designed for reverse bias used
- 2. View angle tolerance is ± 5°
- 3. Avoid operating ELEM series LEDs at maximum operating temperature exceed 1 hour.
- 4. All specification are assured by reliability test for 1000hr, IV degradation less than 30%.
- 5. All reliability items are tested under good thermal management with 1.0x 1.0 cm² MCPCB.
- 6. Peak pulse current shall be applied under conditions as max duration time 50ms and max duty cycle 10%.
- 7. Operate LED component at maximum rating conditions continuously will cause possible permanent damage and de-rating parameters. Exercise multiple maximum rating parameters simultaneously should not be allowed. When maximum rating parameters are applied over a long period will result potential reliability issue.

Electro-Optical Characteristics (T solder pad =25°C)

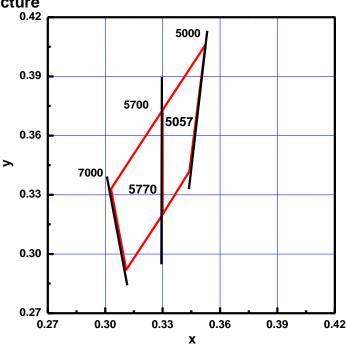
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Luminous Flux ₍₁₎	Фν	16	22		lm	
Forward Voltage _{(2) (3)}	V_{F}	2.8	3.3	3.85	V	I _F =60mA
Correlated Color Temperature	CCT	5000		7000	K	

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Luminous Flux ₍₁₎	Ф۷	39	55		lm	
Forward Voltage _{(2) (3)}	V_{F}	2.95	3.8	4.15	V	I _F =150mA
Correlated Color Temperature	CCT	5000		7000	K	

Note:

- 1. Luminous flux measurement tolerance: ±10%
- 2. Forward voltage measurement tolerance: ±0.1V
- 3. Electric and optical data is tested at 50 ms pulse condition.
- 4. The data of luminous flux measured at thermal pad=25°C

Bin Range of Forward Voltage Binning


Bin Code	Min.	Тур.	Max.	Unit	Condition
2832	2.80		3.25		_
3235	3.25		3.55	V	I _F =60mA
3538	3.55		3.85	_	

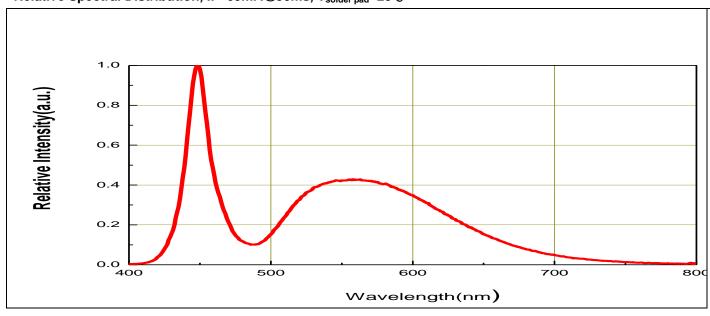
Bin Range of Luminous Intensity

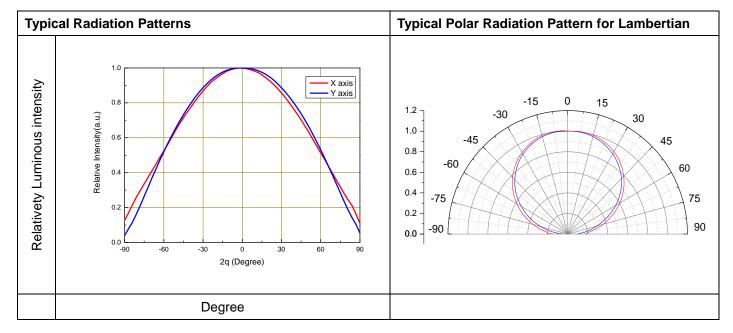
Bin Code	Min.	Тур.	Max.	Unit	Condition
E7	16		20		
E8	20		23		
E9	23		27		1 00 1
F1	27		33	- lm	I _F =60mA
F2	33		39	_	
F3	39		45		

Notes:

1.Color Bin (1): 5057K 2.Color Bin (2): 5770K

White Bin Coordinate


Bin	CIE-X	CIE-Y	CCT Reference Range
	0.3300	0.3200	
5057	0.3300	0.3730	– – 5000K ~ 5700K
3037	0.3440	0.3420	= 5000K ~ 5700K
	0.3524	0.4061	
	0.3030	0.3330	
5770	0.3300	0.3730	– – 5700K ~ 7000K
5770	0.3300	0.3200	= 3700K ~ 7000K
	0.3110	0.2920	_

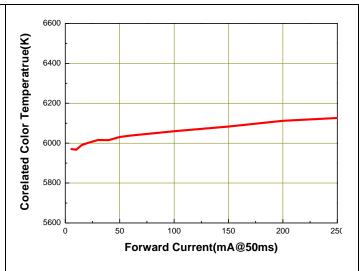

- 1. Color coordinates measurement allowance: ±0.01
- 2. Color bins are defined at IF=60mA and 50ms pulse operation condition.

Typical Electro-Optical Characteristics Curves

Relative Spectral Distribution, IF=60mA@50ms, $T_{solder\ pad}$ =25 $^{\circ}$ C

- 1. $2\theta_{1/2}$ is the off axis angle from lamp centerline where the luminous intensity is 1/2 of the peak value.
- 2. View angle tolerance is $\pm 5^{\circ}$.

Forward Voltage vs Forward Current,

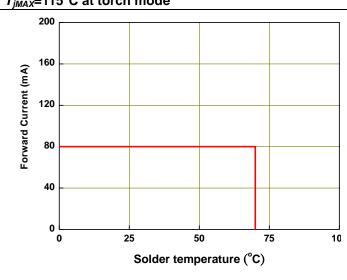

100

Forward Current(mA@50ms)

150

200

Correlated Color Temperature(CCT) vs. Forward Current

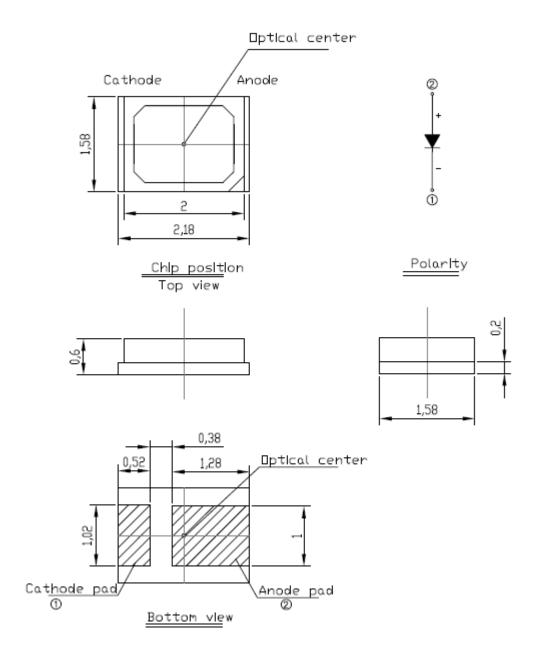


Luminous Flux vs Forward Current,

3.2

2.8

Forward Current Derating Curve, Derating based on T_{iMAX} =115°C at torch mode

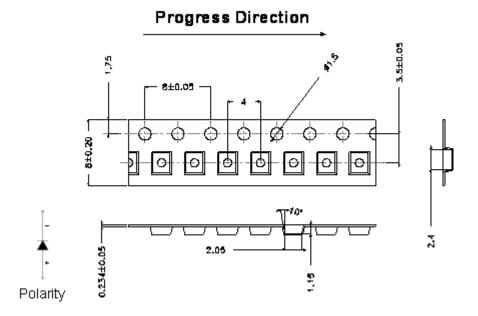


Note:

1. All correlation data is tested under superior thermal management with 1.0x 1.0 cm² MCPCB

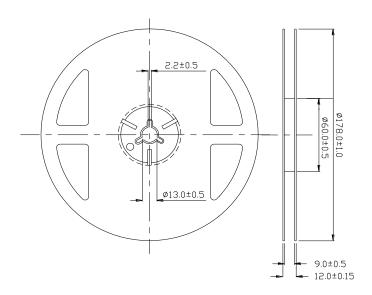
Package Dimension

- 1. Dimensions are in millimeters.
- 2. Tolerances unless mentioned are ± 0.1mm.
- 3. The thermal pad is electrically unity from the Anode and contact pads.
- 4. Do not handle the device by the lens. Incorrect force applied to the lens may lead to the failure of devices.

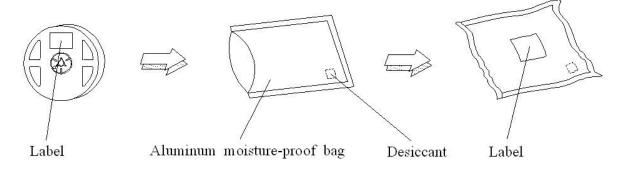

Moisture Resistant Packing Materials

Label Explanation

- CPN: Customer Specification (when required)
- P/N: Everlight Production Number
- · QTY: Packing Quantity
- · CAT: Luminous Flux (Brightness) Bin
- HUE: Color Bin
- REF: Forward Voltage Bin
- · LOT No: Lot Number


Carrier Tape Dimensions: Loaded Quantity 2000 pcs Per Reel

- 1. Dimensions are in millimeters.
- 2.Tolerances unless mentioned are ±0.1mm.


Reel Dimensions

Note:

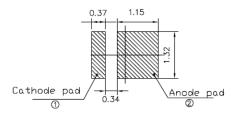
- Dimensions are in millimeters.
- Tolerances for fixed dimensions are ±0.1mm.

Moisture Resistant Packing Process

Reflow Soldering Characteristics

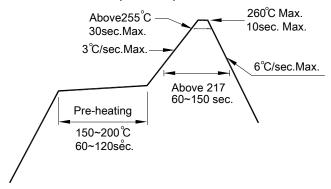
Soldering and Handling

1. Over-current-proof


Customer must apply resistors for protection; otherwise slight voltage shift will cause big current change (Burn out will happen).

2. Storage

- i. Before the package is opened: The LEDs should be stored at 30°C or less and 50%RH or less after being shipped from Everlight. The storage life is 6 months. If the LEDs are to be stored for more than 6 months, they should be stored in a sealed container with a nitrogen atmosphere and moisture absorbent material.
- ii. After opening the package: The LED's should be stored under 30°C or less and 30%RH or less. The LED should be used within 168hrs (7days) after opening the package. If unused LEDs remain, they should be stored in moisture proof packages. After opening the package, the LEDs should be stored at temperature less than 30°C and relative humidity less than 85%.
- iii. Before using LEDs: The LEDs should be baked under the following conditions: pre-curing at 60±5℃ for 24 hours
- iv. Do not stack assemblies containing Everlight ELEM LEDs to prevent damage to the optical surface of LEDs. Forces applied to the optical surface may result in the surface being damaged.

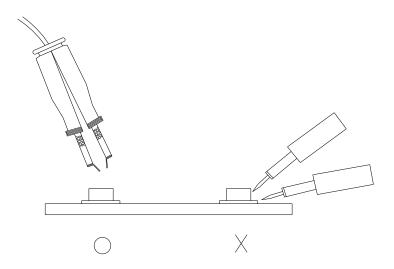

3. Soldering Condition

Soldering Pad

Solder pad

ii. Pb-free solder temperature profile

- iii. Reflow soldering should not be done more than two times.
- iv. When soldering, do not put stress on the LEDs during heating.
- v. After soldering, do not warp the circuit board.



4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 350°C for 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

